• 中文核心期刊
  • CSCD中国科学引文数据库来源期刊
  • 中国科技核心期刊
  • 中国机械工程学会材料分会会刊
Advanced Search
XIE Xu-ming, YANG Rui. Progress in High Performance Polymer Materials[J]. Materials and Mechanical Engineering, 2015, 39(7): 1-10. DOI: 10.11973/jxgccl201507001
Citation: XIE Xu-ming, YANG Rui. Progress in High Performance Polymer Materials[J]. Materials and Mechanical Engineering, 2015, 39(7): 1-10. DOI: 10.11973/jxgccl201507001

Progress in High Performance Polymer Materials

More Information
  • Received Date: May 27, 2015
  • In recent years,various advanced polymer materials such as graphene/polymer nanocomposites and high performance polymer composites are attracting more and more attention.In this review,the importances of different interfacial interactions between graphene and polymer matrices including hydrogen bonding,π-π stacking,covalent bonding and coordination bonding for fabrication of graphene/polymer nanocomposites are systematically summarized.Further,how to achieve high-performance polymer nanocomposites through blending is also described.Besides,because failure mechanism and lifetime prediction of materials are very important for their application,the effects of additives,stress and lubricants on ageing behavior of rubber seals are investigated.The failure mechanism is proposed.
  • [1]
    NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669.
    [2]
    OHTA T,BOSTWICK A,SEYLLER T,et al.Controlling the electronic structure of bilayer graphene[J].Science,2006,313:951-954.
    [3]
    GIRIT,MEYER J C,ERNI R,et al.Graphene at the edge:stability and dynamics[J].Science,2009,323:1705-1708.
    [4]
    GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
    [5]
    LEE C,WEI X,KYSAR J W,et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385-388.
    [6]
    BALANDIN A A,GHOSH S,BAO W,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
    [7]
    DU X,SKACHKO I,BARKER A,et al.Approaching ballistic transport in suspended graphene[J].Nature Nanotechnology,2008,3(8):491-495.
    [8]
    CASTRO N A H,GUINEA F,PERES N M R,et al.The electronic properties of graphene[J].Reviews of Modern Physics,2009,81(1):109-162.
    [9]
    BUNCH J S,VERBRIDGE S S,ALDEN J S,et al.Impermeable atomic membranes from graphene sheets[J].Nano Letters,2008,8(8):2458-2462.
    [10]
    GEIM A K.Graphene:status and prospects[J].Science,2009,324:1530-1534.
    [11]
    KOJIMA Y,USUKI A,KAWASUMI M,et al.One-pot synthesis of nylon 6-clay hybrid[J].Journal of Polymer Science Part A:Polymer Chemistry,1993,31(7):1755-1758.
    [12]
    OKADA A,KAWASUMI M,USUKI A,et al.Nylon 6-clay hybrid[J].Materials Research Society Symposium Proceedings,1990,171:45-50.
    [13]
    KOJIMA Y,USUKI A,KAWASUMI M,et al.Mechanical properties of nylon 6-clay hybrid[J].Journal of Materials Research,1993,8(5):1185-1189.
    [14]
    RAY S S,OKAMOTO M.Polymer/layered silicate nanocomposites:a review from preparation to processing[J].Progress in Polymer Science,2003,28(11):1539-1641.
    [15]
    SPITALSKY Z,TASIS D,PAPAGELIS K,et al.Carbon nanotube-polymer composites:chemistry,processing,mechanical and electrical properties[J].Progress in Polymer Science,2010,35(3):357-401.
    [16]
    GUDARZI M M,SHARIF F.Enhancement of dispersion and bonding of graphene-polymer through wet transfer of functionalized graphene oxide[J].Express Polymer Letters,2012,6(12):1017-1031.
    [17]
    YOUSEFI N,LIN X,ZHENG Q,et al.Simultaneous in situ reduction,self-alignment and covalent bonding in graphene oxide/epoxy composites[J].Carbon,2013,59:406-417.
    [18]
    MA J,MENG Q,MICHELMORE A,et al.Covalently bonded interfaces for polymer/graphene composites[J].Journal of Materials Chemistry:A,2013,1(13):4255-4264.
    [19]
    WAN Y J,TANG L C,GONG L X,et al.Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties[J].Carbon,2014,69:467-480.
    [20]
    SI J,LI J,WANG S,et al.Enhanced thermal resistance of phenolic resin composites at low loading of graphene oxide[J].Composites Part A:Applied Science and Manufacturing,2013,54:166-172.
    [21]
    LIU Y Z,LI Y F,YANG Y G,et al.Preparation and properties of graphene oxide-carbon fiber/phenolic resin composites[J].Carbon,2013,52:624-626.
    [22]
    YUAN F Y,ZHANG H B,LI X,et al.In situ chemical reduction and functionalization of graphene oxide for electrically conductive phenol formaldehyde composites[J].Carbon,2014,68:653-661.
    [23]
    WU C,HUANG X Y,WANG G L,et al.Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites[J].Journal of Materials Chemistry,2012,22(14):7010-7019.
    [24]
    BIAN J,LIN H L,HE F X,et al.Fabrication of microwave exfoliated graphite oxide reinforced thermoplastic polyurethane nanocomposites:effects of filler on morphology,mechanical,thermal and conductive properties[J].Composites Part A:Applied Science and Manufacturing,2013,47:72-82.
    [25]
    XIANG C,COX P J,KUKOVECZ A,et al.Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances[J].ACS Nano,2013,7(11):10380-10386.
    [26]
    LIAO K H,PARK Y T,ABDALA A,et al.Aqueous reduced graphene/thermoplastic polyurethane nanocomposites[J].Polymer,2013,54(17):4555-4559.
    [27]
    YANG Y K,HE C E,PENG R G,et al.Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites[J].J Mater Chem,2012,22(12):5666-5675.
    [28]
    JU S P,WANG Y C,HUANG G J,et al.Miscibility of graphene and poly(methyl methacrylate) (PMMA):molecular dynamics and dissipative particle dynamics simulations[J].RSC Advances,2013,3(22):8298-8307.
    [29]
    CHOI B,LEE J,LEE S,et al.Generation of ultra-high-molecular-weight polyethylene from metallocenes immobilized onto N-doped graphene nanoplatelets[J].Macromolecular Rapid Communications,2013,34(6):533-538.
    [30]
    ZHANG H B,ZHENG W G,YAN Q,et al.Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J].Polymer,2010,51(5):1191-1196.
    [31]
    MAITI S,SHRIVASTAVA N K,SUIN S,et al.Polystyrene/MWCNT/graphite nanoplate nanocomposites:efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking[J].ACS Applied Materials & Interfaces,2013,5(11):4712-4724.
    [32]
    FANG Z,ITO A,STUART A C,et al.Soluble reduced graphene oxide sheets grafted with polypyridylruthenium-derivatized polystyrene brushes as light harvesting antenna for photovoltaic applications[J].ACS Nano,2013,7(9):7992-8002.
    [33]
    YU Y H,LIN Y Y,LIN C H,et al.High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties[J].Polymer Chemistry,2014,5(2):535-550.
    [34]
    PANT H R,PARK C H,TIJING L D,et al.Bimodal fiber diameter distributed graphene oxide/nylon-6 composite nanofibrous mats via electrospinning[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,407:121-125.
    [35]
    PANT H R,PANT B,PARK C H,et al.RGO/nylon-6 composite mat with unique structural features and electrical properties obtained from electrospinning and hydrothermal process[J].Fibers and Polymers,2013,14(6):970-975.
    [36]
    YUAN D,WANG B,WANG L,et al.Unusual toughening effect of graphene oxide on the graphene oxide/nylon 11 composites prepared by in situ melt polycondensation[J].Composites Part B:Engineering,2013,55:215-220.
    [37]
    LIANG J,HUANG Y,ZHANG L,et al.Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites[J].Advanced Functional Materials,2009,19(14):2297-2302.
    [38]
    LIU L Q,GAO Y,LIU Q,et al.High mechanical performance of layered graphene oxide/poly(vinyl alcohol) nanocomposite films[J].Small,2013,9(14):2466-2472.
    [39]
    DAS B,PRASAD K E,RAMAMURTY U,et al.Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene[J].Nanotechnology,2009,20(12):125705[2015-06-03].http://iopscience.iop.org/0957-4484/20/12/125705/.DOI: 10.1088/0957-4484/20/12/125705
    [40]
    XU Y,HONG W,BAI H,et al.Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure[J].Carbon,2009,47(15):3538-3543.
    [41]
    ZHAO X,ZHANG Q,CHEN D,et al.Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites[J].Macromolecules,2010,43(5):2357-2363.
    [42]
    JIANG L,SHEN X P,WU J L,et al.Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites[J].Journal of Applied Polymer Science,2010,118(1):275-279.
    [43]
    YANG X M,LI L A,SHANG S M,et al.Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites[J].Polymer,2010,51(15):3431-3435.
    [44]
    BAO C L,GUO Y Q,SONG L,et al.Poly (vinyl alcohol) nanocomposites based on graphene and graphite oxide:a comparative investigation of property and mechanism[J].Journal of Materials Chemistry,2011,21(36):13942-13950.
    [45]
    HAZARIKA M,JANA T.Graphene nanosheets generated from sulfonated polystyrene/graphene nanocomposite[J].Composites Science and Technology,2013,87:94-102.
    [46]
    JIA H,SU X,HOU G,et al.Molecular dynamics simulation of interactions on graphene/polypyrrole nanocomposites interface[J].Integrated Ferroelectrics:an International Journal,2013,145(1):130-139.
    [47]
    LIM Y S,TAN Y P,LIM H N,et al.Preparation and characterization of polypyrrole/graphene nanocomposite films and their electrochemical performance[J].Journal of Polymer Research,2013,20(6):1-10.
    [48]
    ZHOU T,CHEN D,JIU J,et al.Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes[J].Express Polymer Letters,2013,7(9):756-766.
    [49]
    OUYANG W,SUN J,MEMON J,et al.Scalable preparation of three-dimensional porous structures of reduced graphene oxide/cellulose composites and their application in supercapacitors[J].Carbon,2013,62:501-509.
    [50]
    GOPIRAMAN M,FUJIMORI K,ZEESHAN K,et al.Structural and mechanical properties of cellulose acetate/graphene hybrid nanofibers:spectroscopic investigations[J].Express Polymer Letters,2013,7(6):554-563.
    [51]
    QIAN X,SONG L,TAI Q,et al.Graphite oxide/polyurea and graphene/polyurea nanocomposites:a comparative investigation on properties reinforcements and mechanism[J].Composites Science and Technology,2013,74:228-234.
    [52]
    SHEN B,ZHAI W,CHEN C,et al.Melt blending in situ enhances the interaction between polystyrene and graphene through π-π stacking[J].ACS Applied Materials & Interfaces,2011,3(8):3103-3109.
    [53]
    WU H,ZHAO W,HU H,et al.One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites[J].Journal of Materials Chemistry,2011,21(24):8626-8632.
    [54]
    LIU Y T,XIE X M,YE X Y.High-concentration organic solutions of poly (styrene-co-butadiene-co-styrene)-modified graphene sheets exfoliated from graphite[J] Carbon,2011,49(11):3529-3537.
    [55]
    CHENG H K F,SAHOO N G,TAN Y P,et al.Poly (vinyl alcohol) nanocomposites filled with poly (vinyl alcohol)-grafted graphene oxide[J].ACS Applied Materials & Interfaces,2012,4(5):2387-2394.
    [56]
    PAN Y,BAO H,SAHOO N G,et al.Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery[J].Advanced Functional Materials,2011,21(14):2754-2763.
    [57]
    ZHU S,LI J,CHEN Y,CHEN Z,et al.Grafting of graphene oxide with stimuli-responsive polymers by using ATRP for drug release[J].Journal of Nanoparticle Research,2012,14(9):1132-1142.
    [58]
    LIU J,SONG G,HE C,et al.Self-Healing in tough graphene oxide composite hydrogels[J].Macromolecular Rapid Communications,2013,34(12):1002-1007.
    [59]
    YADAV S K,YOO H J,CHO J W.Click coupled graphene for fabrication of high-performance polymer nanocomposites[J].Journal of Polymer Science Part B:Polymer Physics,2013,51(1):39-47.
    [60]
    KUMAR M,CHUNG J S,KONG B S,et al.Synthesis of graphene-polyurethane nanocomposite using highly functionalized graphene oxide as pseudo-crosslinker[J].Materials Letters,2013,106:319-321.
    [61]
    HAN S,CHUN B C.Preparation of polyurethane nanocomposites via covalent incorporation of functionalized graphene and its shape memory effect[J].Composites Part A:Applied Science and Manufacturing,2014,58:65-72.
    [62]
    OH S M,OH K M,DAO T D,et al.The modification of graphene with alcohols and its use in shape memory polyurethane composites[J].Polymer International,2013,62(1):54-63.
    [63]
    XIONG Z Y,GU T H,WANG X G.Self-assembled multilayer films of sulfonated graphene and polystyrene-based diazonium salt as photo-cross-linkable supercapacitor electrodes[J].Langmuir,2014,30(2):522-532.
    [64]
    MONICAVECA L,LU F,MEZIANI M J,et al.Polymer functionalization and solubilization of carbon nanosheets[J].Chemical Communications,2009(18):2565-2567.
    [65]
    SALAVAGIONE H J,GOMEZ M A,MARTINEZ G.Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol)[J].Macromolecules,2009,42(17):6331-6334.
    [66]
    PARK S,LEE K S,BOZOKLU G,et al.Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking[J].ACS Nano,2008,2(3):572-578.
    [67]
    WU L,LIU L,GAO B,et al.Aggregation kinetics of graphene oxides in aqueous solutions:experiments,mechanisms,and modeling[J].Langmuir,2013,29(49):15174-15181.
    [68]
    冯青平.多壁碳纳米管的修饰及在基板上的排列研究[D].北京:清华大学,2007.
    [69]
    LIN C,LIU Y T,XIE X M.Improved mechanical properties of graphene oxide/poly (ethylene oxide) nanocomposites by dynamic interfacial interaction of coordination[J].Australian Journal of Chemistry,2014,67(1):121-126.
    [70]
    LIU Y T,ZHU X M,DUAN Z Q,et al.Flexible and robust MoS2-graphene hybrid paper cross-linked by a polymer ligand:a high-performance anode material for thin film lithium-ion batteries[J].Chemical Communications,2013,49(87):10305-10307.
    [71]
    LIU Y T,FENG Q P,XIE X M,et al.The production of flexible and transparent conductive films of carbon nanotube/graphene networks coordinated by divalent metal (Cu,Ca or Mg) ions[J].Carbon,2011,49(10):3371-3375.
    [72]
    LIU Y T,DANG M,XIE X M,et al.Synergistic effect of Cu2+-coordinated carbon nanotube/graphene network on the electrical and mechanical properties of polymer nanocomposites[J].Journal of Materials Chemistry,2011,21(46):18723-18729.
    [73]
    LIU Y T,TAN Z,XIE X M,et al.Processable and robust MoS2 paper chemically cross-linked with polymeric ligands by the coordination of divalent metal ions[J].Chemistry-an Asian Journal,2013,8(4):817-823.
    [74]
    LIU Y T,XIE X M,YE X Y.Tuning the solubility of boron nitride nanosheets in organic solvents by using block copolymer as a “Janus” modifier[J].Chemical Communications,2013,49(4):388-390.
    [75]
    LIU Y T,DUAN Z Q,XIE X M,et al.A universal strategy for the hierarchical assembly of functional 0/2D nanohybrids[J].Chemical Communications,2013,49(16):1642-1644.
    [76]
    CHEN N,LIU Y T,XIE X M,et al.High-concentration aliphatic and aromatic dispersions of single-and few-layer graphene noncovalently modified by block copolymer crystallization[J].Carbon,2012,50(12):4760-4764.
    [77]
    XU J Z,CHEN T,YANG C L,et al.Isothermal crystallization of poly (l-lactide) induced by graphene nanosheets and carbon nanotubes:a comparative study[J].Macromolecules,2010,43(11):5000-5008.
    [78]
    XU J Z,CHEN C,WANG Y,et al.Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites[J].Macromolecules,2011,44(8):2808-2818.
    [79]
    ZHENG X,XU Q,HE L,et al.Modification of graphene oxide with amphiphilic double-crystalline block copolymer polyethylene-b-poly (ethylene oxide) with assistance of supercritical CO2 and its further functionalization[J].The Journal of Physical Chemistry:B,2011,115(19):5815-5826.
    [80]
    赵纯,张玉龙.聚醚醚酮[M].北京:化学工业出版社,2008.
    [81]
    FLOCK J,FRIEDRICH K,YUAN Q.On the friction and wear behaviour of PAN- and pitch-carbon fiber reinforced PEEK composites[J].Wear,1999,225(4):304-311.
    [82]
    BIJWE J,SEN S,GHOSH A.Influence of PTFE content in PEEK-PTFE blends on mechanical properties and tribo-performance in various wear modes[J].Wear,2005,258(10):1536-1542.
    [83]
    BRISCOE B,YAO L H,STOLARSKI T A.The friction and wear of poly(tetrafluoroethylene)-poly (etheretherketone) composites:an initial appraisal of the optimum composition[J].Wear,1986,108(4):357-374.
    [84]
    BURRIS D L,SAWYER W G.A low friction and ultra low wear rate PEEK/PTFE composite[J].Wear,2006,261(3/4):410-418.
    [85]
    LU Z P,FRIEDRICH K.On sliding friction and wear of PEEK and its composites[J].Wear,1995,181/183(95):624-631.
    [86]
    ZHANG Z,BREIDT C,CHANG L,et al.Wear of PEEK composites related to their mechanical performances[J].Tribology International,2004,37(3):271-277.
    [87]
    谢续明,增田晴久.树脂组合物及其模塑品:中国,ZL 2010 1 0218794.0[P].2012-05-30.
    [88]
    谢续明,增田晴久.樹脂組成物及び成型品:日本,日本特许第5702385号[P].平成27-02-27.
    [89]
    谢续明,增田晴久.树脂组合物及成形品:韩国,第10-1498394号[P].2015-02-25.
    [90]
    朱敏.橡胶化学与物理[M].北京:化学工业出版社,1984.
    [91]
    李昂.橡胶的老化现象及其老化机理[J].特种橡胶制品,2009,30(5):56-67.
    [92]
    周吉玉,李贵贤,范宗良.丁腈橡胶的热老化性能[J].石油化工应用,2009,28(2):82-85.
    [93]
    黄安民,王小萍,贾德民.氢化丁腈橡胶耐热和耐介质性能[J].弹性体,2006,16(2):63-68.
    [94]
    陈经盛.橡胶湿热老化试验的研究[J].老化与应用,1994(1):1-8.
    [95]
    PATEL M,MORRELL P R,EVANS J.Load bearing property testing of a silica filled room temperature vulcanized polysiloxane rubber[J].Polymer Testing,2004,23(5):605-611.
    [96]
    李咏今.几种硫化丁腈橡胶常温化学应力松弛行为的研究[J].橡胶工业,1993,40(12):751-754.
    [97]
    李咏今.现行橡胶及其制品贮存期快速测定方法的可靠性研究[J].橡胶工业,1994,41(5):289-296.
    [98]
    陈金爱,钟庆明,陈允保.橡胶O型密封圈的老化寿命试验研究[J].合成材料老化与应用,1998(1):6-12.
    [99]
    CELINA M,GRAHAM A C,GILLEN K T,et al.Thermal degradation studied of a polyurethane propellant binder[J].Rubber Chemistry and Technology,2000,73(4):678-693.
    [100]
    GILLEN K T,CELINA M,BERNSTEIN R.Validation of improved methods for predicting long-term elastomeric seal lifetimes from compression stress-relaxation and oxygen consumption techniques[J].Polymer Degradation and Stability,2003,82(1):25-35.
    [101]
    GILLEN K T,BERNSTEIN R,DERZON D K.Evidence of non-arrhenius behaviour from laboratory aging and 24-year field aging of polychloroprene rubber materials[J].Polymer Degradation and Stability,2005,87(1):57-67.
    [102]
    BERNSTEIN R,GILLEN K T.Predicting the lifetime of fluorosilicone o-rings[J].Polymer Degradation and Stability,2009,94(12):2107-2113.
    [103]
    CELINA M,GILLEN K T,ASSINK R A.Accelerated aging and lifetime predictions:review of non-arrhenius behavior due to two competing processes[J].Polymer Degradation and Stability,2005,90(3):395-404.
    [104]
    DELOR F,BARROIS-OUDIN N,DUTEURTRE X,et al.Oxidation of rubbers analysed by HATR/IR spectroscopy[J].Polymer Degradation and Stability,1998,62(2):395-401.
    [105]
    KUSAKABE D,MIZOGUCHI M,KURIYAMA T.Degradation profiles of injection-molded block-co-polymer polypropylene after outdoor and artificial weathering[C]//5th European Weathering Symposium.Lisbon,Portugal:[s.n],2011.
    [106]
    GARBARCZYK M,KUHN W,KLINOWSKI J,et al.Characterization of aged nitrile rubber elastomers by NMR spectroscopy and microimaging[J].Polymer,2002,43(11):3169-3172.
    [107]
    ZHAO J,YANG R,IERVOLINO R,et al.Changes of chemical structure and mechanical property levels during thermo oxidative aging of nitrile rubber[J].Rubber Chemistry and Technology,2013,86(4),591-603.
    [108]
    LIU X,ZHAO J,LIU Y,et al.Volatile components changes during thermal aging of nitrile rubber by flash evaporation of Py-GC/MS[J].Journal of Analytical and Applied Pyrolysis,2015,113:193-201.
    [109]
    GILLEN K T,CELINA M,KEENAN M R.Methods for predicting more confident lifetimes of seals in air environments[J].Rubber Chemistry and Technology,2000,73(2):265-283.
    [110]
    MOFIDE M,KASSFELDT E,PRAKASH B.Tribological behaviour of an elastomer aged in different oils[J].Tribology International,2008,41(9/10):860-866.
  • Related Articles

    [1]ZHAO Pengcheng, CHE Wei, LI Kaishang, WANG Bo, ZHANG Peng, WANG Dongzhen, HAN Guisheng, WANG Ji. High-Cycle and Low-Cycle Fatigue Performance and Life Prediction Model of TC4 ELI Titanium Alloy[J]. Materials and Mechanical Engineering, 2025, 49(2): 105-111. DOI: 10.11973/jxgccl240147
    [2]LI Dong, WANG Xiaowei, CHEN Yefeng, ZHANG Tianyu, GONG Jianming. High Temperature Fatigue Deformation Behavior and Life Prediction of 316L Stainless Steel under Different Control Modes[J]. Materials and Mechanical Engineering, 2024, 48(3): 102-111. DOI: 10.11973/jxgccl202403015
    [3]NAN Qing, XIAO Junfeng, GAO Sifeng, TANG Wenshu, LI Yongjun, ZHANG Jiong, LIU Quanming. High Temperature Oxidation Life Prediction of Thermal Barrier Coating for Heavy Gas Turbine Blade[J]. Materials and Mechanical Engineering, 2023, 47(11): 62-66,73. DOI: 10.11973/jxgccl202311011
    [4]HOU Jun, WANG Xiaowei. Prediction Model of Combined High and Low Cycle Fatigue Life Considering Load Interaction[J]. Materials and Mechanical Engineering, 2023, 47(4): 83-87,102. DOI: 10.11973/jxgccl202304015
    [5]QIN Shenghuan, ZHAO Gang, SHUAI Tao, ZHANG Keshi. Improved Critical Plane Model for Multiaxial Fatigue Life Prediction of HRB335 Steel[J]. Materials and Mechanical Engineering, 2021, 45(11): 47-54,61. DOI: 10.11973/jxgccl202111010
    [6]ZHANG Zhaofu, XU Lianyong, MA Dongfang, XU Liang, HU Fengtao, JIANG Chenghu. High Temperature Low Cycle Fatigue Behavior and Life Prediction of P92 Steel[J]. Materials and Mechanical Engineering, 2019, 43(11): 1-4. DOI: 10.11973/jxgccl201911001
    [7]CAI Qing-mu, LIU Yue-ming, HUANG Chang-qing, LOU jun, TIAN Wei-jian. The Reliability and Progress of Life prediction Methods for High Temperature Pressure Pipes in Thermal Power Plants[J]. Materials and Mechanical Engineering, 2012, 36(12): 5-9.
    [8]DING Zhi-ping, LI Ming, WANG Teng-fei, YANG Rong-hua. Low Cycle Fatigue Life Prediction for Ni-Based Single Crystal High Temperature Alloy Based on Unit Cell Model[J]. Materials and Mechanical Engineering, 2012, 36(6): 79-85.
    [9]REN Yan-jie, CHEN Jian, QIU Wei, WANG Zhao, HE Jian-jun, LU Xu-xiang, LI Mao-jun. Prediction for High-Temperature Low-Cycle Fatigue Lifetime of 316L Stainless Steel Based on Immune Algorithm[J]. Materials and Mechanical Engineering, 2010, 34(7): 92-94.
    [10]ZHANG Yun, LU Chun-peng, RUI Zhi-yuan. Life Prediction of 45 Steel in Low Cycle Fatigue[J]. Materials and Mechanical Engineering, 2007, 31(6): 26-29.

Catalog

    Article views (7) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return